Linear dimension reduction approximately preserving a function of the 1-norm
نویسندگان
چکیده
منابع مشابه
Neighborhood Preserving Projections (NPP): A Novel Linear Dimension Reduction Method
Dimension reduction is a crucial step for pattern recognition and information retrieval tasks to overcome the curse of dimensionality. In this paper a novel unsupervised linear dimension reduction method, Neighborhood Preserving Projections (NPP), is proposed. In contrast to traditional linear dimension reduction method, such as principal component analysis (PCA), the proposed method has good n...
متن کاملthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولAlgorithmic Linear Dimension Reduction in the `1 Norm for Sparse Vectors
We can recover approximately a sparse signal with limited noise, i.e, a vector of length d with at least d − m zeros or near-zeros, using little more than m log(d) nonadaptive linear measurements rather than the d measurements needed to recover an arbitrary signal of length d. Several research communities are interested in techniques for measuring and recovering such signals and a variety of ap...
متن کاملDimension Reduction in the l1 norm
The Johnson-Lindenstrauss Lemma shows that any set of n points in Euclidean space can be mapped linearly down to O((log n)/ǫ) dimensions such that all pairwise distances are distorted by at most 1 + ǫ. We study the following basic question: Does there exist an analogue of the JohnsonLindenstrauss Lemma for the l1 norm? Note that Johnson-Lindenstrauss Lemma gives a linear embedding which is inde...
متن کاملImpossibility of dimension reduction in the nuclear norm
Let S1 (the Schatten–von Neumann trace class) denote the Banach space of all compact linear operators T : `2 → `2 whose nuclear norm ‖T‖S1 = ∑∞ j=1 σj(T ) is finite, where {σj(T )} ∞ j=1 are the singular values of T . We prove that for arbitrarily large n ∈ N there exists a subset C ⊆ S1 with |C| = n that cannot be embedded with bi-Lipschitz distortion O(1) into any n-dimensional linear subspac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2020
ISSN: 1935-7524
DOI: 10.1214/20-ejs1773